Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 21(3): 1182-1191, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38323546

RESUMO

The chemical structure of excipients molecularly mixed in an amorphous solid dispersion (ASD) has a significant impact on properties of the ASD including dissolution behavior, physical stability, and bioavailability. Polymers used in ASDs require a balance between hydrophobic and hydrophilic functionalities to ensure rapid dissolution of the amorphous dispersion as well as sustained supersaturation of the drug in solution. This work demonstrates the use of postpolymerization functionalization of poly(vinylpyridine) excipients to elucidate the impact of polymer properties on the dissolution behavior of amorphous dispersions containing posaconazole. It was found that N-oxidation of pyridine functionalities increased the solubility of poly(vinylpyridine) derivatives in neutral aqueous conditions and allowed for nanoparticle formation which supplied posaconazole into solution at concentrations exceeding those achieved by more conventional excipients such as hydroxypropyl methylcellulose acetate succinate (HPMCAS) or Eudragit E PO. By leveraging these functional modifications of the parent poly(vinylpyridine) excipient to increase polymer hydrophilicity and minimize the effect of polymer on pH, a new polymeric excipient was optimized for rapid dissolution and supersaturation maintenance for a model compound.


Assuntos
Excipientes , Óxidos , Triazóis , Excipientes/química , Solubilidade , Polímeros/química , Metilcelulose
2.
J Pharm Sci ; 113(2): 306-313, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38065243

RESUMO

Pharmaceutical products represent a meaningful target for sustainability improvement and emissions reduction. It is proposed here that rethinking the standard, and often linear, approach to the synthesis of Active Pharmaceutical Ingredients (API) and subsequent formulation and drug product processing will deliver transformational sustainability opportunities. The greatest potential arguably involves API that have challenging physico-chemical properties. These can require the addition of excipients that can significantly exceed the weight of the API in the final dosage unit, require multiple manufacturing steps to achieve materials amenable to delivering final dosage units, and need highly protective packaging for final product stability. Co-processed API are defined as materials generated via addition of non-covalently bonded, non-active components during drug substance manufacturing steps, differing from salts, solvates and co-crystals. They are an impactful example of provocative re-thinking of historical regulatory and quality precedents, blurring drug substance and drug product operations, with sustainability opportunities. Successful examples utilizing co-processed API can modify properties with use of less excipient, while simultaneously reducing processing requirements by delivering material amenable to continuous manufacturing. There are also opportunities for co-processed API to reduce the need for highly protective packaging. This commentary will detail the array of sustainability impacts that can be delivered, inclusive of business, regulatory, and quality considerations, with discussion on potential routes to more comprehensively commercialize co-processed API technologies.


Assuntos
Química Farmacêutica , Indústria Farmacêutica , Tecnologia Farmacêutica , Embalagem de Medicamentos , Excipientes/química , Preparações Farmacêuticas
3.
J Pharm Sci ; 112(8): 2115-2123, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37160228

RESUMO

Commercialization of most promising active pharmaceutical ingredients (APIs) is impeded either by poor bioavailability or challenging physical properties leading to costly manufacture. Bioavailability of ionizable hydrophobic APIs can be enhanced by its conversion to salt form. While salt form of the API presents higher solution concentration than the non-ionized form, poor physical properties resulting from particle anisotropy or non-ideal morphology (needles) and particle size distribution not meeting dissolution rate targets can still inhibit its commercial translation. In this regard, API physical properties can be improved through addition of non-active components (excipients or carriers) during API manufacture. In this work, a facile method to perform reactive crystallization of an API salt in presence of the microporous environment of a hydrogel microparticle is presented. Specifically, the reaction between acidic antiretroviral API, raltegravir and base potassium hydroxide is performed in the presence of polyethylene glycol diacrylamide hydrogel microparticles. In this bottom-up approach, the spherical template hydrogel microparticles for the reaction lead to monodisperse composites loaded with inherently micronized raltegravir-potassium crystals, thus improving API physical properties without hampering bioavailability. Overall, this technique provides a novel approach to reactive crystallization while maintaining the API polymorph and crystallinity.


Assuntos
Hidrogéis , Cristalização , Raltegravir Potássico , Tamanho da Partícula , Solubilidade
4.
J Pharm Sci ; 112(8): 2087-2096, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36822272

RESUMO

Amorphous solid dispersions feature prominently in the approach to mitigate low bioavailability of poorly water-soluble small molecules, particularly in the early development space focusing on toxicity evaluations and clinical studies in normal healthy volunteers, where high exposures are needed to establish safety margins. Spray drying has been the go-to processing route for a number of reasons, including ubiquitous availability of equipment, the ability to accommodate small scale deliveries, and established processes for delivering single phase amorphous material. Active pharmaceutical ingredients (APIs) with low glass transition temperatures (Tg) can pose challenges to this approach. This study addresses multiple routes towards overcoming issues encountered with a low Tg (∼ 12 °C) API during manufacture of a spray dry intermediate (SDI). Even once formulated as an amorphous solid dispersion (ASD) with HPMCAS-LG, the Tg of the ASD was sufficiently low to require the use of non-ideal solvents, posing safety concerns and ultimately resulting in low yields with frequent process interruptions to resolve product build-up. To resolve challenges with spray drying the HPMCAS-L SDI, higher Tg polymers were assessed during spray drying, and an alternative antisolvent precipitation-based process was evaluated to generate co-precipitated amorphous dispersions (cPAD) with either HPMCAS-L or the additional higher Tg polymers. Both approaches were found to be viable alternatives to achieve single phase ASDs while demonstrating comparable in vitro and in vivo bioperformance compared to the SDI. The results of this effort offer valuable considerations for future early-stage activities for ASDs with low Tg APIs.


Assuntos
Química Farmacêutica , Secagem por Atomização , Humanos , Composição de Medicamentos/métodos , Química Farmacêutica/métodos , Solubilidade , Polímeros
5.
Mol Pharm ; 20(3): 1779-1787, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36719910

RESUMO

Crystalline drugs with low solubility have the potential to benefit from delivery in the amorphous form. The polymers used in amorphous solid dispersions (ASDs) influence their maximum drug loading, solubility, dissolution rate, and physical stability. Herein, the influence of hydrophobicity of crosslinked polyethylenimine (PEI) is investigated for the delivery of the BCS class II nonsteroidal anti-inflammatory drug flufenamic acid (ffa). Several synthetic variables for crosslinking PEI with terephthaloyl chloride were manipulated: solvent, crosslinking density, reactant concentration, solution viscosity, reaction temperature, and molecular weight of the hyperbranched polymer. Benzoyl chloride was employed to cap amine groups to increase the hydrophobicity of the crosslinked materials. Amorphous deprotonated ffa was present in all ASDs; however, the increased hydrophobicity and reduced basicity from benzoyl functionalization led to a combination of amorphous deprotonated ffa and amorphous neutral ffa in the materials at high drug loadings (50 and 60 wt %). All ASDs demonstrated enhanced drug delivery in acidic media compared to crystalline ffa. Physical stability testing showed no evidence of crystallization after 29 weeks under various relative humidity conditions. These findings motivate the broadening of polymer classes employed in ASD formation to include polymers with very high functional group concentrations to enable loadings not readily achieved with existing polymers.


Assuntos
Anti-Inflamatórios não Esteroides , Polietilenoimina , Preparações Farmacêuticas , Cristalização , Ácido Flufenâmico , Polímeros , Solubilidade
6.
J Pharm Sci ; 112(8): 2069-2078, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36638959

RESUMO

These proceedings contain presentation summaries and discussion highlights from the University of Maryland Center of Excellence in Regulatory Science and Innovation (M-CERSI) Workshop on Co-processed API, held on July 13 and 14, 2022. This workshop examined recent advances in the use of co-processed active pharmaceutical ingredients as a technology to improve drug substance physicochemical properties and drug product manufacturing process robustness, and explored proposals for enabling commercialization of these transformative technologies. Regulatory considerations were discussed with a focus on the classification, CMC strategies, and CMC documentation supporting the use of this class of materials from clinical studies through commercialization. The workshop format was split between presentations from industry, academia and the FDA, followed by breakout sessions structured to facilitate discussion. Given co-processed API is a relatively new concept, the authors felt it prudent to compile these proceedings to gain further visibility to topics discussed and perspectives raised during the workshop, particularly during breakout discussions. Disclaimer: This paper reflects discussions that occurred among stakeholder groups, including FDA, on various topics. The topics covered in the paper, including recommendations, therefore, are intended to capture key discussion points. The paper should not be interpreted to reflect alignment on the different topics by the participants, and the recommendations provided should not be used in lieu of FDA published guidance or direct conversations with the Agency about a specific development program. This paper should not be construed to represent FDA's views or policies.

7.
J Pharm Sci ; 112(8): 2037-2045, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36115592

RESUMO

Amorphous solid dispersions (ASDs) are an attractive option to improve the bioavailability of poorly water-soluble compounds. However, the material attributes of ASDs can present formulation and processability challenges, which are often mitigated by the addition of excipients albeit at the expense of tablet size. In this work, an ASD manufacturing train combining co-precipitation and thin film evaporation (TFE) was used to generate high bulk-density co-precipitated amorphous dispersion (cPAD). The cPAD/TFE material was directly compressed into tablets at amorphous solid dispersion loadings up to 89 wt%, representing a greater than 60% reduction in tablet size relative to formulated tablets containing spray dried intermediate (SDI). This high ASD loading was possible due to densification of the amorphous dispersion during drying by TFE. Pharmacokinetic performance of the TFE-isolated, co-precipitated dispersion was shown to be equivalent to an SDI formulation. These data highlight the downstream advantages of this novel ASD manufacturing pathway to facilitate reduced tablet size via high ASD loading in directly compressed tablets.


Assuntos
Água , Composição de Medicamentos , Solubilidade , Fenômenos Físicos , Comprimidos
8.
J Pharm Sci ; 112(8): 2057-2068, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36574837

RESUMO

Co-precipitation is an emerging manufacturing strategy for amorphous solid dispersions (ASDs). Herein, the interplay between processing conditions, surface composition, and release performance was evaluated using grazoprevir and hypromellose acetate succinate as the model drug and polymer, respectively. Co-precipitated amorphous dispersion (cPAD) particles were produced in the presence and absence of an additional polymer that was either dissolved or dispersed in the anti-solvent. This additional polymer in the anti-solvent was deposited on the surfaces of the cPAD particles during isolation and drying to create hierarchical particles, which we define here as a core ASD particle with an additional water soluble component that is coating the particle surfaces. The resultant hierarchical particles were characterized using X-ray powder diffraction, differential scanning calorimetry, scanning electron microscopy, and X-ray photoelectron spectroscopy (XPS). Release performance was evaluated using a two-stage dissolution test. XPS analysis revealed a trend whereby cPAD particles with a lower surface drug concentration showed improved release relative to particles with a higher surface drug concentration, for nominally similar drug loadings. This surface drug concentration could be impacted by whether the secondary polymer was dissolved in the anti-solvent or dispersed in the anti-solvent prior to isolating final dried hierarchical cPAD powders. Grazoprevir exposure in dogs was higher when the hierarchical cPAD was dosed, with ∼1.8 fold increase in AUC compared to the binary cPAD. These observations highlight the important interplay between processing conditions and ASD performance in the context of cPAD particles and illustrate a hierarchical particle design as a successful approach to alter ASD surface chemistry to improve dissolution performance.


Assuntos
Ciclopropanos , Polímeros , Animais , Cães , Solubilidade , Composição de Medicamentos/métodos , Polímeros/química , Solventes , Liberação Controlada de Fármacos
9.
Pharm Res ; 39(12): 3197-3208, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36271203

RESUMO

PURPOSE: Precipitation of amorphous solid dispersions has gained traction in the pharmaceutical industry given its application to pharmaceuticals with varying physicochemical properties. Although preparing co-precipitated amorphous dispersions (cPAD) in high-shear rotor-stator devices allows for controlled shear conditions during precipitation, such aggressive mixing environments can result in materials with low bulk density and poor flowability. This work investigated annealing cPAD after precipitation by washing with heated anti-solvent to improve bulk powder properties required for downstream drug product processing. METHODS: Co-precipitation dispersions were prepared by precipitation into pH-modified aqueous anti-solvent. Amorphous dispersions were washed with heated anti-solvent and assessed for bulk density, flowability, and dissolution behavior relative to both cPAD produced without a heated wash and spray dried intermediate. RESULTS: Washing cPAD with a heated anti-solvent resulted in an improvement in flowability and increased bulk density. The mechanism of densification was ascribed to annealing over the wetted Tg of the material, which lead to collapse of the porous co-precipitate structure into densified granules without causing crystallization. In contrast, an alternative approach to increase bulk density by precipitating the ASD using low shear conditions showed evidence of crystallinity. The dissolution rate of the densified cPAD granules was lower than that of the low-bulk density dispersions, although both samples reached concentrations equivalent to that of the spray dried intermediate after 90 min dissolution. CONCLUSIONS: Hot wash densification was a tenable route to produce co-precipitated amorphous dispersions with improved properties for downstream processing compared to non-densified powders.


Assuntos
Dessecação , Composição de Medicamentos/métodos , Pós/química , Dessecação/métodos , Solubilidade , Solventes
10.
Pharmaceutics ; 14(9)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36145649

RESUMO

Micronized particles are commonly used to improve the content uniformity (CU), dissolution performance, and bioavailability of active pharmaceutical ingredients (API). Different particle engineering routes have been developed to prepare micron-sized API in a specific size range to deliver desirable biopharmaceutical performance. However, such API particles still risk varying bulk powder properties critical to successful manufacturing of quality drug products due to different particle shapes, size distribution, and surface energetics, arising from the anisotropy of API crystals. In this work, we systematically investigated key bulk properties of 10 different batches of Odanacatib prepared through either jet milling or fast precipitation, all of which meet the particle size specification established to ensure equivalent biopharmaceutical performance. However, they exhibited significantly different powder properties, solid-state properties, dissolution, and tablet CU. Among the 10 batches, a directly precipitated sample exhibited overall best performance, considering tabletability, dissolution, and CU. This work highlights the measurable impact of processing route on API properties and the importance of selecting a suitable processing route for preparing fine particles with optimal properties and performance.

11.
Mol Pharm ; 19(9): 3304-3313, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35985017

RESUMO

Amorphous solid dispersions (ASDs) are a well-documented formulation approach to improve the rate and extent of dissolution for hydrophobic pharmaceuticals. However, weakly basic compounds can complicate standard approaches to ASDs due to pH-dependent solubility, resulting in uncontrolled drug release in gastric conditions and unstabilized supersaturated solutions prone to precipitation at neutral pH. This work examines the release mechanisms of amorphous dispersions containing model weakly basic pharmaceuticals posaconazole and lumefantrine from a basic poly(dimethylaminoethyl methacrylate) copolymer (Eudragit EPO) and compares their dissolution behavior with ASDs stabilized by acidic and neutral polymers to understand potential benefits to release from a basic polymeric stabilizer. It was found that dissolution of Eudragit EPO ASDs resulted in supersaturation under gastric conditions, which could be sustained upon adjustment to neutral pH. However, the dissolution behavior of Eudragit EPO ASDs was sensitive to the initial pH of the gastric media. For lumefantrine, elevated initial gastric pH resulted in precipitation of amorphous nanoparticles; for posaconazole, elevated gastric pH led to crystallization of the pharmaceutical from solution. This sensitivity to gastric pH was found to originate from the impact of Eudragit EPO on gastric pH and the solubility of each pharmaceutical in the first stage of dissolution. In total, these data illustrate benefits and liabilities for the use of Eudragit EPO for ASDs containing weak pharmaceutical bases to guide the design of robust pharmaceutical formulations.


Assuntos
Metacrilatos , Polímeros , Liberação Controlada de Fármacos , Excipientes/química , Lumefantrina , Polímeros/química , Solubilidade
12.
Pharmaceutics ; 13(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34959298

RESUMO

Co-precipitation is an emerging method to generate amorphous solid dispersions (ASDs), notable for its ability to enable the production of ASDs containing pharmaceuticals with thermal instability and limited solubility. As is true for spray drying and other unit operations to generate amorphous materials, changes in processing conditions during co-precipitation, such as solvent selection, can have a significant impact on the molecular and bulk powder properties of co-precipitated amorphous dispersions (cPAD). Using posaconazole as a model API, this work investigates how solvent selection can be leveraged to mitigate crystallization and maximize bulk density for precipitated amorphous dispersions. A precipitation process is developed to generate high-bulk-density amorphous dispersions. Insights from this system provide a mechanistic rationale to control the solid-state and bulk powder properties of amorphous dispersions.

13.
Pharmaceutics ; 13(7)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34371726

RESUMO

Amorphous solid dispersions (ASD) have become a well-established strategy to improve exposure for compounds with insufficient aqueous solubility. Of methods to generate ASDs, spray drying is a leading route due to its relative simplicity, availability of equipment, and commercial scale capacity. However, the broader industry adoption of spray drying has revealed potential limitations, including the inability to process compounds with low solubility in volatile solvents, inconsistent molecular uniformity of spray dried amorphous dispersions, variable physical properties across batches and scales, and challenges containing potent compounds. In contrast, generating ASDs via co-precipitation to yield co-precipitated amorphous dispersions (cPAD) offers solutions to many of those challenges and has been shown to achieve ASDs comparable to those manufactured via spray drying. This manuscript applies co-precipitation for early safety studies, developing a streamlined process to achieve material suitable for dosing as a suspension in conventional toxicity studies. Development targets involved achieving a rapid, safely contained process for generating ASDs with high recovery yields. Furthermore, a hierarchical particle approach was used to generate composite particles where the cPAD material is incorporated in a matrix of water-soluble excipients to allow for rapid re-dispersibility in the safety study vehicle to achieve a uniform suspension for consistent dosing. Adopting such an approach yielded a co-precipitated amorphous dispersion with comparable stability, thermal properties, and in vivo pharmacokinetics to spray dried amorphous materials of the same composition.

14.
J Pharm Sci ; 110(9): 3238-3245, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34089710

RESUMO

The physical properties of active pharmaceutical ingredients (API) are critical to both drug substance (DS) isolation and drying operations, as well as streamlined drug product (DP) processing and the quality of final dosage units. High aspect ratio, low bulk density, API 'needles' in particular are a hindrance to efficient processing, with a low probability that conventional crystallization routes can modify the challenging morphology. The compound evaluated in this manuscript demonstrated this non-ideal morphology, with the added complexity of shear sensitivity. Modest shear exposure resulted in conversion of the thermodynamically stable crystalline phase to the amorphous phase, with the amorphous phase then undergoing accelerated chemical degradation. Slow filtration during DS isolation resulted in uncontrolled and elevated amorphous levels, while subsequent DP operations including blending, densification and compression increased amorphous content still further. A chemically stable final dosage unit would ideally involve a high bulk density, free flowing API that did not require densification in order to be commercialized as an oral dosage form with direct encapsulation of a single dosage unit. Despite every effort to modify the crystallization process, the physical properties of the API could not be improved. Here, an innovative isolation strategy using a thin film evaporation (TFE) process in the presence of a water soluble polymer alleviated filtration and drying risks and consistently achieved a high bulk density, free flowing co-processed API amenable to direct encapsulation. Characterization of the engineered materials suggested the lower amorphous levels and reduced shear sensitivity were achieved by coating surfaces of the API at relatively low polymer loads. This particle engineering route blurred conventional DS/DP boundaries that not only achieved improved chemical stability but also resulted in a optimized material, with simplified and more robust processing operations for both drug substance and drug product.


Assuntos
Química Farmacêutica , Preparações Farmacêuticas , Cristalização , Composição de Medicamentos , Estabilidade de Medicamentos , Polímeros , Água
15.
Mol Pharm ; 17(7): 2232-2244, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32392068

RESUMO

Optimized physical properties (e.g., bulk, surface/interfacial, and mechanical properties) of active pharmaceutical ingredients (APIs) are key to the successful integration of drug substance and drug product manufacturing, robust drug product manufacturing operations, and ultimately to attaining consistent drug product critical quality attributes. However, an appreciable number of APIs have physical properties that cannot be managed via routes such as form selection, adjustments to the crystallization process parameters, or milling. Approaches to control physical properties in innovative ways offer the possibility of providing additional and unique opportunities to control API physical properties for both batch and continuous drug product manufacturing, ultimately resulting in simplified and more robust pharmaceutical manufacturing processes. Specifically, diverse opportunities to significantly enhance API physical properties are created if allowances are made for generating co-processed APIs by introducing nonactive components (e.g., excipients, additives, carriers) during drug substance manufacturing. The addition of a nonactive coformer during drug substance manufacturing is currently an accepted approach for cocrystals, and it would be beneficial if a similar allowance could be made for other nonactive components with the ability to modify the physical properties of the API. In many cases, co-processed APIs could enable continuous direct compression for small molecules, and longer term, this approach could be leveraged to simplify continuous end-to-end drug substance to drug product manufacturing processes for both small and large molecules. As with any novel technology, the regulatory expectations for co-processed APIs are not yet clearly defined, and this creates challenges for commercial implementation of these technologies by the pharmaceutical industry. The intent of this paper is to highlight the opportunities and growing interest in realizing the benefits of co-processed APIs, exemplified by a body of academic research and industrial examples. This work will highlight reasons why co-processed APIs would best be considered as drug substances from a regulatory perspective and emphasize the areas where regulatory strategies need to be established to allow for commercialization of innovative approaches in this area.


Assuntos
Composição de Medicamentos/métodos , Indústria Farmacêutica/métodos , Preparações Farmacêuticas/química , Precipitação Química , Química Farmacêutica/métodos , Cristalização , Portadores de Fármacos/química , Excipientes/química , Aromatizantes/química , Tamanho da Partícula , Controle de Qualidade
16.
Mol Pharm ; 16(6): 2579-2589, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31021639

RESUMO

Molecular interactions between the active pharmaceutical ingredient and polymer have potentially substantial impacts on the physical stability of amorphous solid dispersions (ASDs), presumably by manipulating molecular mobility and miscibility. However, structural details for understanding the nature of the molecular contacts and mechanistic roles in various physicochemical and thermodynamic events often remain unclear. This study provides a spectroscopic characterization of posaconazole (POSA) formulations, a second-generation triazole antifungal drug (Noxafil, Merck & Co., Inc., Kenilworth, NJ, USA), at molecular resolution. One- and two-dimensional (2D) solid-state NMR (ssNMR) techniques including spectral editing, heteronuclear 1H-13C, 19F-13C, 15N-13C, and 19F-1H polarization transfer, and spin correlation and ultrafast magic angle spinning, together with the isotopic labeling strategy, were utilized to uncover molecular details in POSA ASDs in a site-specific manner. Active groups in triazole and difluorophenyl rings exhibited rich but distinct categories of interactions with two polymers, hypromellose acetate succinate and hypromellose phthalate, including intermolecular O-H···O═C and O-H···F-C hydrogen bonding, π-π aromatic packing, and electrostatic interaction. Interestingly, the chlorine-to-fluorine substituent in POSA, one of the major structural differences from itraconazole that could facilitate binding to the biological target, offers an additional contact with the polymer. These findings exhibit 2D ssNMR as a sensitive technique for probing sub-nanometer structures of pharmaceutical materials and provide a structural basis for optimizing the type and strength of drug-polymer interactions in the design of amorphous formulations.


Assuntos
Carbono/química , Coloides/química , Triazóis/química , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética
17.
Drug Dev Ind Pharm ; 45(4): 521-531, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30609381

RESUMO

Direct compression offers a simple route to generate pharmaceutical dosage units and is core to the growing arena of continuous manufacturing. However, direct compression can be untenable for some active materials. This paper will outline three specific challenges API's can present to direct (active pharmaceutical ingredients) compression. The first involves API's having exceedingly high aspect ratio ("needles") or small particle size resulting in low bulk density and poor flow properties. Two additional cases are relatively newer challenges to direct compression driven by the growing need for solubility enhancing formulations, and involve nano-crystalline materials and spray dried amorphous dispersions. Multiple approaches for managing high aspect ratio or micronized API's have been implemented during the crystallization process or via particle coating downstream from API isolation. Fewer options have been reported for the successful conversion of nano-crystalline materials or spray dried amorphous dispersions into materials amenable to direct compression as these materials offer another specific set of challenges. One route that has not been explored that stands to allow continuous drug product processing across a broader product portfolio involves evaluating opportunities at the drug substance/drug product interface. Here, the options achieved through targeted introduction of excipients to the drug substance processing steps during product precipitation and/or isolation from a product slurry are discussed. This approach introduces new opportunities for designing multicomponent particles through productive and inherently continuous processes. This also offers a longer-term potential route to integrate across continuous drug substance processing to continuous drug product processing.


Assuntos
Engenharia Química/métodos , Composição de Medicamentos/métodos , Química Farmacêutica , Excipientes/química , Tamanho da Partícula
18.
Int J Pharm ; 559: 147-155, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30654058

RESUMO

Amorphous solid dispersions are a promising option for managing compounds with poor aqueous solubility. However, for compounds with high melting points, thermal stability limitations, or poor solubility in volatile solvents, conventional routes of hot melt extrusion or spray drying may not be viable. Co-precipitated amorphous dispersions (cPAD) can provide a solution. For the material studied in this paper, the cPAD material that was seemingly identical to spray dried material in terms of being single phase amorphous (as measured by DSC and XRD ) but showed slower dissolution behavior. It was identified that physical properties of the cPAD material could be improved to enhance wettability and improve dissolution performance. This was achieved by incorporating the cPAD material into a matrix of water soluble excipients generated via evaporative isolation routes. Importantly, this approach appears to offer another route to further increase the drug load in final dosage units and is significant as increased drug loading generally results in slower or incomplete release. Results showed successful proof of concept via in vitro biorelevant dissolution and confirmatory canine pharmacokinetic studies yielding comparable exposure for capsules comprised of conventional spray dried material as well as capsules with elevated drug load comprised of cPAD hierarchical particles.


Assuntos
Preparações Farmacêuticas/química , Animais , Química Farmacêutica/métodos , Dessecação/métodos , Cães , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Estabilidade de Medicamentos , Excipientes/química , Congelamento , Polímeros/química , Solubilidade/efeitos dos fármacos , Molhabilidade
19.
J Pharm Sci ; 107(1): 183-191, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28711592

RESUMO

Many small-molecule active pharmaceutical ingredients (APIs) exhibit low aqueous solubility and benefit from generation of amorphous dispersions of the API and polymer to improve their dissolution properties. Spray drying and hot-melt extrusion are 2 common methods to produce these dispersions; however, for some systems, these approaches may not be optimal, and it would be beneficial to have an alternative route. Herein, amorphous solid dispersions of compound A, a low-solubility weak acid, and copovidone were made by conventional spray drying and co-precipitation. The physicochemical properties of the 2 materials were assessed via X-ray diffraction, differential scanning calorimetry, thermal gravimetric analysis, and scanning electron microscopy. The amorphous dispersions were then formulated and tableted, and the performance was assessed in vivo and in vitro. In human dissolution studies, the co-precipitation tablets had slightly slower dissolution than the spray-dried dispersion, but both reached full release of compound A. In canine in vitro dissolution studies, the tablets showed comparable dissolution profiles. Finally, canine pharmacokinetic studies showed that the materials had comparable values for the area under the curve, bioavailability, and Cmax. Based on the summarized data, we conclude that for some APIs, co-precipitation is a viable alternative to spray drying to make solid amorphous dispersions while maintaining desirable physicochemical and biopharmaceutical characteristics.


Assuntos
Preparações Farmacêuticas/química , Ácidos/química , Animais , Área Sob a Curva , Disponibilidade Biológica , Varredura Diferencial de Calorimetria/métodos , Precipitação Química , Química Farmacêutica/métodos , Dessecação/métodos , Cães , Composição de Medicamentos/métodos , Humanos , Preparações Farmacêuticas/metabolismo , Polímeros/química , Solubilidade , Comprimidos/química , Comprimidos/metabolismo , Difração de Raios X/métodos
20.
Int J Pharm ; 348(1-2): 18-26, 2008 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-17804181

RESUMO

This study focused on the milling of wet granulated agglomerates at points before and after drying in a typical high-shear pharmaceutical process train. These steps, referred to here as wet and dry milling, utilized a conical screen mill. Milling of granulation in the wet state eliminated 1-10mm size agglomerates without affecting granule porosity or inducing further agglomeration. These millimeter-size agglomerates broke down during wet milling into moderately sized fragments larger than 125microm. In contrast, when milled after drying, these same 1-10mm-size agglomerates broke down predominantly into fine particles less than 125microm. Data from screen-less milling trials suggest that the mill screen served only as a classifier and did not significantly contribute to the route of breakage for either wet or dry milling. However, in the case of dry milling, mill screens with grated surface textures did result in fewer fines than non-grated screens. This may be a result of reduced residence time in the mill. Experiments varying the size fraction of feed material and the rotational speed of the mill's impeller identified impact attrition as the primary mechanism governing dry granule breakage. The findings in this study shed light into the fundamental breakdown behavior of pharmaceutical agglomerates and demonstrate how breakdown of wet agglomerates via a de-lumping step prior to drying can lead to a reduced level of fine particle generation during dry milling.


Assuntos
Excipientes/química , Tamanho da Partícula , Preparações Farmacêuticas/química , Pós/química , Algoritmos , Carboximetilcelulose Sódica/química , Celulose/análogos & derivados , Celulose/química , Lactose/química , Mecânica , Povidona/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...